Tarmoq hujumlarini aniqlashda sun’iy intellekt texnologiyalarining qo‘llanilishi

Authors

  • Axmadaliyev Akramjon Rashidovich Author

Keywords:

tarmoq hujumlari, sun’iy intellekt, mashinaviy o‘rganish, chuqur o‘rganish, anomaliya aniqlash, signaturali tahlil, IDS, GNN.

Abstract

Mazkur maqolada zamonaviy tarmoq xavfsizligi muhitida sun’iy intellekt asosidagi yondashuvlarning tarmoq hujumlarini aniqlashdagi o‘rni va samaradorligi tahlil qilindi. Mashinaviy o‘rganish hamda chuqur o‘rganish modellari signaturali va anomaliyaga asoslangan tizimlarga qanday integratsiyalashayotgani, ularning kuchli va zaif tomonlari solishtirildi. O‘rganilgan ilmiy manbalar shuni ko‘rsatadiki, gibrid arxitekturalar — ya’ni qoidaviy tahlil va o‘z-o‘zini o‘rganuvchi modellar kombinatsiyasi — amaliy muhitda yuqori aniqlik va barqarorlikni ta’minlay oladi. Shuningdek, grafik neyron tarmoqlari (GNN) va tushuntiriluvchan sun’iy intellekt (XAI) texnologiyalari kelgusida kiberxavfsizlik sohasida muhim yo‘nalish sifatida shakllanishi mumkinligi asoslab berildi.

Downloads

Download data is not yet available.

References

[1]. Sommer R., Paxson V. Outside the Closed World: On Using Machine Learning for Network Intrusion Detection // IEEE Security & Privacy. – 2010. – Vol. 8, № 6. – P. 38–46.

[2]. Vinayakumar R., Alazab M., Soman K. P., Poornachandran P. Deep Learning Approach for Intelligent Intrusion Detection System // IEEE Access. – 2019. – Vol. 7. – P. 41525–41550.

[3]. Yin C., Zhu Y., Fei J., He X. A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks // IEEE Access. – 2017. – Vol. 5. – P. 21954–21961.

[4]. Ferrag M. A., Maglaras L., Moschoyiannis S., Janicke H. Deep Learning for Cyber Security Intrusion Detection: Approaches, Datasets, and Comparative Study // Journal of Information Security and Applications. – 2020. – Vol. 50. – Article 102419.

[5]. Khraisat A., Gondal I., Vamplew P., Kamruzzaman J. Survey of Intrusion Detection Systems: Techniques, Datasets and Challenges // Security and Communication Networks. – 2019. – Vol. 2019. – Article ID 3402858.

[6]. Sarhan M., Layeghy S., Portmann M. Evaluating Standard Feature Sets towards Increased Generalisability and Explainability of ML-Based Network Intrusion Detection // Journal of Information Security and Applications. – 2021. – Vol. 63. – Article 103045.

[7]. Chawla N. V., Bowyer K. W., Hall L. O., Kegelmeyer W. P. SMOTE: Synthetic Minority Over-sampling Technique // Journal of Artificial Intelligence Research. – 2002. – Vol. 16. – P. 321–357.

Downloads

Published

2026-02-12