TIJORAT BANKLARINING AXBOROT TIZIMIDA FOYDALANILADIGAN SMART-Q ALGORITMINI ISHLAB CHIQISH

Authors

  • Kobiljanov Sh.N. Muhammad al-Xorazmiy nomidagi Toshkent axborot texnologiyalari universiteti mustaqil izlanuvchisi Author

Keywords:

tijorat banklari, axborot tizimi, ma’lumotlar integratsiyasi, ma’lumotlar sifati, foydalanishni cheklash, SMART-Q algoritmi, real vaqt monitoringi, axborot xavfsizligi.

Abstract

ushbu maqolada tijorat banklarining axborot tizimida foydalanishni cheklash jarayonida ma’lumotlar integratsiyasi va sifatini boshqarish muammolari tahlil qilinadi hamda ushbu jarayonni samarali tashkil etish uchun SMART-Q (Systematic Multi-layered Algorithm for Real-Time Quality) algoritmi taklif etiladi. Algoritm bank axborot tizimlarida mavjud bo‘lgan turli format va manbalardagi ma’lumotlarni yagona struktura asosida integratsiyalash, real vaqt rejimida monitoring qilish va ma’lumotlar sifatini avtomatik yaxshilash imkonini beradi. SMART-Q algoritmi ma’lumotlarni normalizatsiya qilish, semantic mapping, data fusion, mashinali o‘qitish asosida tozalash va statistik tahlil usullarini birlashtirgan holda ishlaydi. Natijada tijorat banklarining axborot tizimida foydalanishni cheklash jarayonida qaror qabul qilish ishonchliligi oshadi, xatoliklar kamayadi va axborot xavfsizligi darajasi yaxshilanadi.

Downloads

Download data is not yet available.

References

Walha A., Ghozzi F., Gargouri F. Data integration from traditional to big data: main features and comparisons of ETL approaches // The Journal of Supercomputing. – 2024. – Vol. 80. – No. 2. – P. 1–28. – URL: https://bohrium.dp.tech/paper/arxiv/4dcd4e4649aa17d5bf399dbaa64f0e937894ff49

Ziaurrahman A. A comprehensive approach to data quality management: bridging business activity monitoring and data reconciliation in banking // International Journal of Core Engineering & Management. – 2024. – Vol. 11. – No. 1. – P. 45–56. – URL: https://ijcem.in

Indra N.H., Ningsih N.H.I. Integration of big data technology in risk management strategies in the banking sector: a systematic literature review // International Journal of Scientific Research and Management. – 2024. – Vol. 12. – No. 4. – P. 2150–2162.

Pandey S.K. Improving data security in banking and financial services through API design and transaction management // International Journal of Intelligent Systems and Applications in Engineering. – 2024. – Vol. 12. – No. 2. – P. 98–106.

Zhang Y., Dai J. Credit risk identification and prevention strategies of small and medium-sized banks based on big data technology // Journal of Information Systems Engineering and Management. – 2025. – Vol. 10. – No. 1. – P. 1–12.

Frontiers Research Group. Bank digital transformation, bank competitiveness and systemic risk // Frontiers in Physics. – 2024. – Vol. 11. – Article ID 1297912. – P. 1–15. – URL: https://www.frontiersin.org (murojaat sanasi: 08.01.2026).

Ningsih N.H.I., Indra N.H. Big data technology integration for banking risk management // International Journal of Scientific Research and Management. – 2024. – Vol. 12. – No. 3. – P. 2034–2046.

Li X., Chen Y. Research and design of a financial intelligent risk control platform based on big data analysis and deep machine learning // arXiv preprint. – 2024. – arXiv:2409.10331. – URL: https://arxiv.org/abs/2409.10331.

Kumar R., Singh P. Artificial intelligence and cybersecurity in banking sector: opportunities and risks // arXiv preprint. – 2024. – arXiv:2412.04495. – URL: https://arxiv.org/abs/2412.04495.

Wang H., Liu Z. Heterogeneous information network based default analysis on banking micro and small enterprise users // arXiv preprint. – 2022. – arXiv:2204.11849. – URL: https://arxiv.org/abs/2204.11849.

Downloads

Published

2026-01-10