Nano-suyuqliklarda issiqlik uzatish jarayonining viskoz dispersiv modellashtirilishi.

Authors

  • Nigora Oqyoʻlova Andijon davlat texnika instituti. Stajor o'qituvchi Author

Abstract

mazkur tadqiqotda nano-suyuqliklarda issiqlik uzatish jarayonining viskoz-dispersiv modellashtirilishi termogidrodinamik nuqtayi nazardan chuqur o‘rganilgan. Tadqiqotning ilmiy yangiligi shundaki, unda issiqlik oqimini faqat konduktiv va konvektiv komponentlar orqali emas, balki viskoz dispersiv oqim orqali ham tahlil etish usuli taklif etiladi. Ushbu yondashuv nano-o‘lchamdagi zarrachalarning suyuqlik ichidagi mikroshearlanish, Brown harakati, termodiffuziya va nanoqurilmaviy interfaol qatlam hosil bo‘lishi bilan bog‘liq energiya almashinuvi mexanizmlarini o‘z ichiga oladi. Tadqiqotda Navye–Stoks va energiya tenglamalari asosida viskoz dispersiya koeffitsienti D_vnazariy jihatdan chiqarildi va uni hisoblash uchun o‘lchamsiz komplekslar (Reynolds, Prandtl, Peclet sonlari) bilan bog‘liqligi aniqlanadi. Model analitik va sonli metodlar integratsiyasida yechildi. Natijalar shuni ko‘rsatdiki, dispersiv ta’sir 1–3% hajmiy konsentratsiyali Al₂O₃–suv nano-suyuqligida issiqlik uzatish samaradorligini 18–27% gacha oshiradi, bu esa an’anaviy modellarga nisbatan yuqori moslikka ega bo‘ldi. Tadqiqot nano-issiqlik tizimlari, mikrokanalli issiqlik almashinish apparatlari va elektron sovitish tizimlari loyihalashda qo‘llanishi mumkin.

Downloads

Download data is not yet available.

References

1. Choi, S. U. S., & Eastman, J. A. (1995). Enhancing Thermal Conductivity of Fluids with Nanoparticles. Argonne National Laboratory Report, ANL-95/20, U.S. Department of Energy.

2. Buongiorno, J. (2006). Convective Transport in Nanofluids. Journal of Heat Transfer, 128(3), 240–250.

3. Kleinstreuer, C., & Feng, Y. (2011). Experimental and Theoretical Studies of Nanofluid Thermal Conductivity Enhancement: A Review. Nanoscale Research Letters, 6(1), 229.

4. Xuan, Y., & Roetzel, W. (2000). Conceptions for Heat Transfer Correlation of Nanofluids. International Journal of Heat and Mass Transfer, 43(19), 3701–3707.

5. Das, S. K., Choi, S. U. S., & Patel, H. E. (2007). Heat Transfer in Nanofluids. Taylor & Francis, New York.

6. Koo, J., & Kleinstreuer, C. (2004). A New Thermal Conductivity Model for Nanofluids. Journal of Nanoparticle Research, 6(6), 577–588.

7. Trisaksri, V., & Wongwises, S. (2007). Critical Review of Heat Transfer Characteristics of Nanofluids. Renewable and Sustainable Energy Reviews, 11(3), 512–523.

8. Khanafer, K., & Vafai, K. (2011). A Critical Synthesis of Theoretical and Experimental Studies on Nanofluid Thermal Conductivity Enhancement. International Journal of Heat and Mass Transfer, 54(19–20), 4410–4428.

9. Timofeeva, E. V., Routbort, J. L., & Singh, D. (2011). Particle Shape Effects on Thermophysical Properties of Alumina Nanofluids. Journal of Applied Physics, 106(1), 014304.

10. Esfahani, J. A., & Afrand, M. (2018). A Comprehensive Review on Nanofluid Heat Transfer in the Laminar and Turbulent Flow Regimes. Journal of Molecular Liquids, 259, 1–18.

11. Mahian, O., Kianifar, A., Kalogirou, S. A., Pop, I., & Wongwises, S. (2013). A Review of the Applications of Nanofluids in Solar Energy. International Journal of Heat and Mass Transfer, 57(2), 582–594.

12. Ghasemi, B., & Aminossadati, S. M. (2010). Brownian Motion of Nanoparticles in a Triangular Enclosure with Natural Convection. International Journal of Thermal Sciences, 49(6), 931–940.

13. Keblinski, P., Phillpot, S. R., Choi, S. U. S., & Eastman, J. A. (2002). Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids). International Journal of Heat and Mass Transfer, 45(4), 855–863.

14. Nield, D. A., & Kuznetsov, A. V. (2009). Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid. International Journal of Heat and Mass Transfer, 52(25–26), 5796–5801.

15. Wang, X. Q., & Mujumdar, A. S. (2008). Heat Transfer Characteristics of Nanofluids: A Review. International Journal of Thermal Sciences, 46(1), 1–19.

16. Aminfar, H., & Mohammadpourfard, M. (2015). Numerical Investigation of Dispersive Transport Phenomena in Nanofluids Using a Two-Phase Lattice Boltzmann Method. Physica A, 436, 189–204.

17. Shah, T. R., & Ali, H. M. (2019). Applications of Nanofluids in Heat Exchangers: A Review. Journal of Nanomaterials, 2019, 1–32.

18. Jalal, M., & Hosseini, S. M. (2016). Viscous Dissipation and Entropy Generation in Nanofluid Flows. Journal of Heat Transfer, 138(12), 122002.

19. Nkurikiyimfura, I., Wang, Y., & Pan, Z. (2013). Heat Transfer Enhancement by Magnetic Nanofluids—A Review. Renewable and Sustainable Energy Reviews, 21, 548–561.

20. Li, Y., Zhou, J., Tung, S., Schneider, E., & Xi, S. (2009). A Review on Development of Nanofluid Preparation and Characterization. Powder Technology, 196(2), 89–101.

Downloads

Published

2025-10-31