TARMOQ HUJUMLARINI ANIQLASHDA SUN’IY INTELLEKT ALGORITMLARINI QO‘LLASH

Authors

  • Azizbek Ibrohimov “Kiberxavfsizlik markazi” DUK bo‘lim boshlig‘i Author
  • Elshod Haydarov Muhammad al-Xorazmiy nomidagi TATU, kafedra mudiri Author
  • Elshod Haydarov Muhammad al-Xorazmiy nomidagi TATU, kafedra mudiri Author

Keywords:

tarmoq hujumlari, sun’iy intellekt, mashinani o‘rganish, chuqur o‘rganish, anomaliya, signaturali tizim, IDS, GNN.

Abstract

Ushbu maqolada tarmoq hujumlarini aniqlashda sun’iy intellekt algoritmlarini qo‘llash samaradorligi tahlil qilindi. Mashinani o‘rganish va chuqur o‘rganish modellarining afzalliklari, ularning signaturali va anomaliya asosidagi tizimlarda qo‘llanish imkoniyatlari ko‘rsatildi. Tadqiqot natijalari gibrid yondashuvlar eng yuqori aniqlikni ta’minlashini ko‘rsatdi. Kelgusida graf neyron tarmoqlar va explainable AI texnologiyalaridan foydalanish istiqbollari tavsiya etildi.

Downloads

Download data is not yet available.

References

[1]. Khraisat, A., Gondal, I., Vamplew, P., & Kamruzzaman, J. (2019). Survey of intrusion detection systems: techniques, datasets and challenges. Security and Communication Networks, 2019.

[2]. Buczak, A. L., & Guven, E. (2016). A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Communications Surveys & Tutorials, 18(2), 1153–1176.

[3]. Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran, P., Al-Nemrat, A., & Venkatraman, S. (2019). Deep Learning Approach for Intelligent Intrusion Detection System. IEEE Access, 7, 41525–41550.

[4]. Yin, C., Zhu, Y., Fei, J., & He, X. (2017). A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks. IEEE Access, 5, 21954–21961.

[5]. Ferrag, M. A., Maglaras, L., Moschoyiannis, S., & Janicke, H. (2020). Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study. Journal of Information Security and Applications, 50, 102419.

[6]. Liao, H.-J., Lin, C.-H. R., Lin, Y.-C., & Tung, K.-Y. (2013). Intrusion detection system: A comprehensive review. Journal of Network and Computer Applications, 36(1), 16–24.

[7]. Sarhan, M., Layeghy, S., & Portmann, M. (2021). Evaluating standard feature sets towards increased generalisability and explainability of ML-based network intrusion detection. Journal of Information Security and Applications, 63, 103045.

Downloads

Published

2025-10-27