STATISTIK USULLAR YORDAMIDA MAʼLUMOTLARDAGI XATOLARNI ANIQLASH VA TUZATISH ALGORITMLARI
Keywords:
Zamonaviy axborot tizimlari, aniqlovchi va tuzatuvchi algoritmlar, kiruvchi axborot oqimi, CRC, Reed–Solomon kodlari.Abstract
Ushbu maqolada maʼlumotlar uzatish va saqlash jarayonida yuzaga keladigan xatoliklarni aniqlash hamda tuzatish masalalari statistik yondashuv asosida tadqiq etilgan. Taklif etilgan A, B va C algoritmlar mos ravishda matnli, raqamli va aralash maʼlumotlarda harflar va raqamlarning chastotalarini hisoblash orqali xatoliklarni aniqlash va avtomatik tuzatish imkonini beradi. Har bir algoritm ikki oʻlchovli massivlar yordamida nazorat qiluvchi strukturalarni yaratib, maʼlumotlarning aniqligini ta’minlaydi. Ushbu algoritmlar bir, ikki va uch karrali xatolarni aniqlashda yuqori samaradorlikka ega bo‘lib, aniqlay olmaydigan xatoliklar ehtimoli juda past (Pn < 0.2·10⁻⁶) ekani ko‘rsatilgan. Statistik asoslangan bu yondashuvlar zamonaviy axborot tizimlarida maʼlumotlar ishonchliligini oshirish va axborot xavfsizligini taʼminlashda muhim ahamiyat kasb etadi.
Downloads
References
M.P. Bobyleva, “Management of documentary communications and information resources of an organization conceptual approaches,” Problems of management theory and practice, No. 5, 2011, pp. 116-126.
M.Yu. Monakhov, I.I. Semenova, D.A. Polyansky, and Yu.M. Monakhov, “Features of the environment for ensuring information reliability in information and telecommunication systems,” Fundamental Research. No. 9, 2014.
N.V. Keldysh, “Ensuring a given level of security when solving functional problems of departmental electronic document management,” Scientific and technical collection of Research Institute of Technology, No. 4, 2013, pp. 118-123.
C.B. Bessonov, Optimization of electronic document management in corporate systems: Dis. . Ph.D. econ. Sci. Moscow. 2001. 187 p.
N.F. Makhmadiyarovich and Y.Sherzodjon, “Methods of increasing data reliability based on distributed and parallel technologies based on blockchain,” Artificial Intelligence, Blockchain, Computing and Security Volume 2. 2023, pp. 637 – 642.
I.I. Jumanov, and Kh.B. Karshiev, “Mechanisms for optimization of detection and correction of text errors based on combining multilevel morphological analysis with n-gram models,” Journal of Physics: Conference Series, 2020, 1546(1), 012082.
J. Isroil, and K. Khusan, “Increasing the reliability of full text documents based on the use of mechanisms for extraction of statistical and semantic links of elements,” Int. Conf. on Inf. Science and Comm. Tech., ICISCT 2020, 2020, 9351397.
J. Isroil, and K. Khusan, “Optimization of transmission and processing of information of electronic documents based on parallel computing technology,” Proc. of Int. Conf. on Technological Advancements in Computational Sciences, ICTACS 2022, 2022, pp. 618–624.
A.A. Rustamovich, N. Mekhriddin, N. Fayzullo, and M. Sabharwal, “Intelligent system of labor market regulation based on the evolutionary modeling of employment,” Proc. - 2022 4th Int. Conf. on Advances in Computing, Comm. Control and Networking, ICAC3N 2022, 2022, pp. 2534–2539, doi: 10.1109/ICAC3N56670.2022.10074149.
H. Zaynidinov, L. Xuramov, and D. Khodjaeva, “Intelligent algorithms of digital processing of biomedical images in wavelet methods,” Artificial Intelligence, Blockchain, Computing and Security, Proc. of the Int. Conf. on Artificial Intelligence, Blockchain, Computing and Security, ICABCS 2023, vol. 2, 2024, pp. 648–653.
I.I. Jumanov, Kh.B Karshiev, and S.A. Tishlikov, “Examination of the efficiency of algorithms for increasing the reliability of information on criteria of harness and the cost of processing electronic documents,” Int. Journal of Recent Tech. and Engineering (IJRTE), vol. 8, iss. 2S11, 2019, ISSN: 2277-3878.
A.R. Akhatov., F. Nazarov, and A. Rashidov Mechanisms of information reliability in big data and blockchain technologies” ICISCT 2021, 3-5.11, doi: 10.1109/ICISCT52966.2021.9670052
Akhatov, F. Nazarov, and A. Rashidov, “Increasing data reliability by using bigdata parallelization mechanisms,” ICISCT 2021: Applications, Trends and Opportunities, 3-5.11.2021, doi: 10.1109/ICISCT52966.2021.9670387.
M. Nurmamatov, and Z. Kulmirzayeva, “Development of an intelligent system for optimization of employment information using genetic algorithms,” AIP Conf. Proc. vol. 3147(1), 2024, 040006, doi: 10.1063/5.0210279.
F. M. Nazarov and S. Yarmatov, “Optimization of prediction results based on ensemble methods of machine learning,” 2023 Int. Russian Smart Industry Conf., Sochi, Russia, 2023, pp. 181-185, doi: 10.1109/SmartIndustryCon57312.2023.10110726.
Ney H. and Kneser R. “Improved clustering techniques for class-based statistical language modelling,” In European Conf. on Speech Comm. and Tech. (Eurospeech), 1993. pages 973–976, Berlin.
Kemal Oflazer, Sergei Nirenburg and Marjorie McSchane, “Bootstrapping morphological analyzers by combining human elicitation and machine learning,” Computational Linguistics, vol. 27, No. 1, 2001, pp. 59-85.
Dilek Hakkani-Tür, Kemal Oflazer, and Gökhan Tür, “Statistical morphological disambiguation for agglutinative languages,” In Proc. of the 18th Int. Conf. on Computational Linguistics (COLING 2000), August, 2000.
I.I Jumanov, and Kh.B. Karshiev, “Methods for increasing the reliability of information with mechanisms for using specific characteristics and textural features of electronic documents,” Uzbek journal “Problems of Informatics and Energy”, Publishing House “Fan” of the Academy of Sciences of the Republic of Uzbekistan. - Tashkent, No. 2, 2019, pp. 44-51.